Disk-Like Self-Affine Tiles in R 2
نویسندگان
چکیده
منابع مشابه
On Disk-like Self-affine Tiles Arising from Polyominoes
In this paper we study a class of plane self-affine lattice tiles that are defined using polyominoes. In particular, we characterize which of these tiles are homeomorphic to a closed disk. It turns out that their topological structure depends very sensitively on their defining parameters. In order to achieve our results we use an algorithm of Scheicher and the second author which allows to dete...
متن کاملHausdorff Dimension of Boundaries of Self-affine Tiles in R
We present a new method to calculate the Hausdorff dimension of a certain class of fractals: boundaries of self-affine tiles. Among the interesting aspects are that even if the affine contraction underlying the iterated function system is not conjugated to a similarity we obtain an upperand and lower-bound for its Hausdorff dimension. In fact, we obtain the exact value for the dimension if the ...
متن کاملIntegral Self Affine Tiles in R Ii Lattice Tilings
Let A be an expanding n n integer matrix with j det A j m A standard digit set D for A is any complete set of coset representatives for Z A Z Associated to a given D is a set T A D which is the attractor of an a ne iterated function system satisfying T d D T d It is known that T A D tiles R n by some subset of Z This paper proves that every standard digit set D gives a set T A D which tiles R w...
متن کاملRational Self-affine Tiles
An integral self-affine tile is the solution of a set equation AT = ⋃d∈D(T +d), where A is an n× n integer matrix and D is a finite subset of Z. In the recent decades, these objects and the induced tilings have been studied systematically. We extend this theory to matrices A ∈ Qn×n. We define rational self-affine tiles as compact subsets of the open subring R ×∏pKp of the adèle ring AK , where ...
متن کاملSelf-Affine Tiles in Rn
A self-affine tile in R is a set T of positive measure with A(T) = d ∈ $ < (T + d), where A is an expanding n × n real matrix with det (A) = m on integer, and $ = {d 1 ,d 2 , . . . , d m } ⊆ R is a set of m digits. It is known that self-affine tiles always give tilings of R by translation. This paper extends the known characterization of digit sets $ yielding self-affine tiles. It proves seve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2001
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-001-0034-y